Applied Rheology Laboratory

List of exercises

- 1. Rheological properties of Stokes fluids
- 2. Investigation of rheological properties of fluids with yield stress
- **3.** Qualitative determination of fluid properties using Höppler reoviscometer
- 4. Study of rheological properties of liquids in capillary rheometer
- 5. Determination of viscosity of fluids using capillary viscometers
- 6. Determining the swelling degree of polymer solution jet

Week	Ι	II	III	IV	V	VI
Group						
Α	1	2	3	4	5	6
В	2	3	4	5	6	1
С	3	4	5	6	1	2
D	4	5	6	1	2	3
Ε	5	6	1	2	3	4
F	6	1	2	3	4	5

Time outline

Week	Date	Comment
0	9-04-2013	
Ι	16-04-2013	
II	23-04-2013	30 min test
III	30-04-2013	
IV	7-05-2013	
V	14-05-2013	
VI	21-05-2013	45 min test
VII	28-05-2013	lab makeup
Extra week	4-06-2013	

Applied Rheology

Key issues required at each laboratory exercises

(the basic knowledge about following issues is obligatory on each laboratory exercise)

- 1. Simple shear:
 - Hooke's law
 - Newton's law
- 2. Flow curve and viscosity curve
- 3. Definition of dynamic and kinematic viscosity
- 4. Influence of temperature and pressure on rheological properties
- 5. Non-Newtonian fluids: definition, classification of fluids, general concept of Newtonian fluids
- 6. Flow curves and basic rheological models of rheostable fluids, e.g. Ostwald-de Waele model, Bingham model and Herschel-Bulkley model.

Applied Rheology Test issues

- 1. Elastic, viscous and viscoelastic response.
- 2. Simple shearing:
 - Hooke's law simple shearing of elastic solid
 - Newton's law simple shearing of fluid
- 3. Definition of dynamic and kinematic viscosity.
- 4. Influence of temperature and pressure on rheological properties.
- 5. Non-newtonian fluids: definition, allocation of fluids, general concept of Newtonian fluids.
- 6. Basic rheological models of rheostable fluids, e.g. Ostwald-de Waele model, Bingham model and Herschel-Bulkley model. Especially flow and viscosity curves.
- 7. Phenomena of shear-thickening and shear-thinning.
- 8. Fluids with yield stress (focus on reasons of this phenomenon).
- 9. Fluids with rheological properties dependent on time of shearing (thixotropy and antithixotropy mechanism)
- 10. Characteristic of viscometers: Ubbelohde, Cannon-Fenske, Ostwald and Höppler.
- 11. Models describing viscoelastic fluids.
- 12. Effects of normal stress (Weissenberg effect, Barusa effect).
- 13. Mechanical models of fluids (Maxwell, Kelvin, Burgers models).
- 14. Electroreological and magnetorheological fluids.
- 15. Falling of single solid particle (settling velocity, drag force on a sphere).
- 16. Capillary rheometry basic equations (velocity profile, bulk velocity, Coriolis coefficient for Newtonian fluids).
- 17. Rotational rheometer.

Literature

1. Chhabra R. P. & Richardson J. F., Non-Newtonian Flow in the Process Industries. Fundamentals and Engineering Applications. Butterworth-Heinemann, 1999.